SAS Factory Miner
4
Josephine Holt added College Scorecard.
18 minutes ago
Jason Moreno joined.
18 minutes ago
Attrition Stem finished running.
12 hours ago
Segment ID failed.
2 days ago
Mark All as Read
Profile
Settings
Sign Out
Template Name
Use
Principal Components
Impute
Tree-Based Variable Selection
Variable Selection
Filter
Decision Tree
Ignore
Transform Variables
Principal Components
Eigenvalue Source
Correlation
Covariance
Include Class Variables
Use Missing as Level
Cumulative
Increment
Apply Maximum Number
Maximum Number
Apply Fixed Number
Fixed Number
Impute
Non Missing Variables
Missing Cutoff
Default Class Input Method
Count
Default Constant Value
Distribution
None
Default Target Method
Count
Default Constant Value
Distribution
None
Distribution Cutoff
Statistics
Data
Trimmed
Winsorized
Default Interval Input Method
Mean
Maximum
Minimum
Midrange
Median
Default Constant Value
None
Default Target Method
Mean
Maximum
Minimum
Midrange
Median
Default Constant Value
None
Default Character Value
Default Number Value
Type
Single
Unique
Source
Imputed Variables
Missing Variables
Tree-Based Variable Selection
Nominal Target Criterion
Entropy
Fast Chaid
GINI
Chi-Square
Interval Target Criterion
Variance
F Test
Minimum Categorical Size
Maximum Branch
Interval Bins
Leaf Size
Maximum Selected
Relative Importance Cutoff
Variable Selection
Target Model
Sequential Selection
Supervised Selection
Unsupervised Selection
Maximum Steps
Cumulative Variance Cutoff
Incremental Variance Cutoff
Selection Method
Fast Selection
LAR
LASSO
Stop Criterion
SBC
AIC
AICC
No Stop Criterion
Filter
Keep Missing Interval Variable Values
Keep Missing Class Variable Values
Interval Default Method
User-Specified Limits
Metadata Limits
Trimmed
Winsorized
None
Class Default Method
Rare Values (Count)
Rare Values (Percentage)
None
Minimum Frequency Cutoff
Minimum Cutoff for Percentage
Maximum Number of Levels Cutoff
Cutoff for Standard Deviation
Cutoff for Robust Methods
Transform Variables
Interval Input
Log
Log10
Square Root
Inverse
Square
Exponential
Centering
Standardize
Range
Bucket
Psuedo-Quantile
Optimal Binning
None
Interval Target
Log
Log10
Square Root
Inverse
Square
Exponential
Centering
Standardize
Range
Bucket
Psuedo-Quantile
Optimal Binning
None
Number of Bins
4
8
16
20
32
Missing Values
Ignore
First
Separate
Reject
Decision Tree
Nominal Target Criterion
Entropy
Fast Chaid
GINI
Chi-Square
Interval Target Criterion
Variance
F Test
Missing Values
Popularity
Similarity
Branch
Maximum Leaves
Maximum Depth
Subtree Method
Assessment
C4.5
Largest
N
Nominal Target Assessment
ASE
Entropy
GINI
Misclassification